CONSTRUCTING PADE APPROXIMATES

A standard Maclaurin Series can be written as-
\[
f(x) = \sum_{k=0}^{N} c_k x^k = c_0 + c_1 x + c_2 x^2 + \ldots + c_N x^N \quad \text{with} \quad c_k = f(0)^{[k]} / k!
\]

As first pointed out by the French mathematician Henri Pade(1863-2053) this expansion can also be approximated by the polynomial quotient-
\[
R(x,m,n) = \frac{P(x,m)}{Q(x,n)} = \frac{\sum_{k=0}^{m} c_k x^k}{1 + \sum_{k=1}^{n} c_k x^k} = \frac{a_o + a_1 x + a_2 x^2 + \ldots a_m x^m}{1 + b_1 x + b_2 x^2 + b_3 x^3 + \ldots b_n x^n}
\]

Most advanced math computer programs call R(x,m,n) the Pade Approximant with a shorthand designation of pade(f(x),x,[m,n]). The evaluation of a_k and b_k coefficients are obtained by evaluating the identity-
\[
f(x) Q(x,n) = P(x,m)
\]

by setting the coefficients of x^k to zero. The larger m and n are taken the more accurate an approximation for f(x) will become. To find unique values for a_k and b_k will require m+n+1 algebraic equations and so f(x) must be expanded out to k=n+m starting with k=0.

We want in this note to develop several different Pade Approximates. Starting with one of the simplest forms, consider f(x)=exp(x) with m=n=1. This produces-
\[
(1 + x + \frac{x^2}{2})(1 + b_1 x) = (a_0 + a_1 x)
\]

and its three equations-
\[
a_0 = 1, \quad a_1 = b_1 + 1, \text{ and } (1/2) + b_1 = 0
\]

The Pade Approximate becomes-
\[
pade(exp(x),x,[1,1]) = \frac{1 + \frac{x}{2}}{1 - \frac{x}{2}}
\]
Note that m and n determine the highest powers of x present in P(x,m) and Q(x,n), respectively. Also the Maclaurin series contains x=m+n as its highest power. We next improve this Pade approximation by considering m=3 and n=2. This produces-

\[
(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120})(1 + b_1 x + b_2 x^2) = (a_o + a_1 x + a_2 x^2 + a_3 x^3)
\]

On solving for the coefficients we find-

\[
pade(\exp(x), x, [3,2]) = \frac{1 + \frac{3}{5} x + \frac{3}{20} x^2 + \frac{1}{60} x^3}{1 - \frac{2}{5} x + \frac{1}{20} x^2}
\]

A plot of exp(x), and pade(exp(x),x,[3,2]) follows-

We see that the Pade approximate is in good agreement with exp(1) up to about x=3. To get agreement above this value of x will require larger values for n and m.

Here is a Pade approximate for the tangent function showing its singularities at \((2n-1)\pi/2\)-

\[
pade(\tan(x), x, [5,5]) = \frac{x}{15} \left\{ \frac{945 - 105x^2 + x^4}{63 - 28x^2 + x^4} \right\}
\]

The graph follows-
A good estimate for the first infinity of \(\tan(x) \) is found by solving \(63-12x^2+x^4=0 \). Its smallest root equals 1.570807884…. This is very close to \(\pi/2=1.570796327…. \) Note the approximation is very close to \(\tan(x) \) over the range -3.5<\(x <3.5 \). A most interesting result also found is that our earlier use of the TLK Method for approximating the values of all trigonometric functions (see the April 11, 2020 article-https://mae.ufl.edu//KTL-UPDATE.pdf) yields a function T(5) identical with the above pade(\(\tan(x),x,[5,5] \)) result. This is a rather amazing result considering that a completely different approach involving Legendre Polynomials was used to find the given quotient approximation T(5).

We continue on to find an approximation for \(\pi \) using the function 4pade(arctan(\(\pi/4 \)),x,[50,50]). It produces the 38 digit accurate result-

\[
\pi=3.1415926535897932384626433832795028841…
\]

in a split second.

Consider next an approximation to \(\ln(2) \) using pade(\(\ln(1+x),x,[12,12] \)). It produces the 17 digit accurate result-

\[
\ln(2)=0.69314718055994530…
\]

when \(x=1 \).

Note that \(m \) and \(n \) need not always be equal in pade approximations. I usually prefer to look at cases where \(m \geq n \). Also the larger \(n \) and \(m \) become the closer one will get to an exact answer. Symmetry of the function \(f(x) \) also plays a role in any pade approximate. The quotient must have the same symmetry as the function \(f(x) \). One sees this clearly in the above case of pade(\(\tan(x),x,[m,n] \)).
As a last example let us look at the Gaussian \(f(x) = \exp(-x^2) \) for several different cases of \([m,n]\). It being an even function means that all powers of \(x \) in the pade approximate will be even. Here are three of such quotients-

\[
p\text{ade}(\exp(-x^2),x,[2,2]) = \frac{1 - \frac{1}{2}x^2}{1 + \frac{1}{2}x^2}
\]

\[
p\text{ade}(\exp(-x^2),x,[4,2]) = \frac{1 - \frac{1}{3}x^2 + \frac{1}{6}x^4}{1 + \frac{1}{3}x^2}
\]

\[
p\text{ade}(\exp(-x^2),x,[4,4]) = \frac{1 - \frac{1}{2}x^2 + \frac{1}{12}x^4}{1 + \frac{1}{2}x^2 + \frac{1}{12}x^4}
\]

A plot of two of these and the Gaussian follow-

U.H.Kurzweg
May 19, 2020
Gainesville, Florida