## MTH ORDER POLYNIMIALS AND CORRESPONDING SEQUENCES

If one considers the second order polynomial-

$$
P(n)=(n+1)^{\wedge} 2
$$

at integer values $1,2,3,4, .$. , one can generate the following table-

| $n$ | $P(n)$ |
| :--- | :--- |
| 0 | 1 |
| 1 | 4 |
| 2 | 9 |
| 3 | 16 |
| 4 | 25 |

That is, $\mathrm{P}(\mathrm{n})$ represents the sequence-

$$
S(n)=\left\{1,4,9,16,25, . . n^{\wedge} 2\right)
$$

, whose elements represent the square of the integers. In a similar manor, other polynomials $\mathrm{P}(\mathrm{n})$ will have associated with them an infinite sequence $S(n)$ whose elements equal $P(n)$ evaluated at integers. Thus the polynomial -

$$
P(n)=(n / 2)+\left(n^{\wedge} 2 / 2\right)
$$

yields the sequence-

$$
S(n)=1,3,6,10,15,21,28, . . .)
$$

The elements here represent the sum of the integers up through $n$. We want in this note to determine the polynomials associated with various integer element sequences and visa versa.

Let us start with the sequence -

$$
S(n)=\{1,2,4,7,11, \ldots\}
$$

and carry out the following difference operation-

| 1 | 2 | 4 | 7 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 |  |

We see that the second difference is constant meaning that the corresponding polynomial must have the quadratic form -

$$
P(n)=a_{0}+a_{1} n+a_{2} n^{\wedge} 2
$$

Solving for the constants alpha, we get the polynomial-

$$
P(n)=1+(n / 2)+\left(n^{\wedge} 2 / 2\right)
$$

with-

$$
S(n)=\{1,2,4,7,11, . .\}
$$

Here the $\mathrm{n}=100$ element in the sequence will be 5051.
Consider next the sequence-

$$
S(n)=\{1,5,14,30,55,91, . .\}
$$

Here the differences yield-

$$
\begin{array}{cccccc}
1 & 5 & 14 & 30 & 55 & 91 \\
4 & 9 & 16 & 25 & 36
\end{array}, \begin{array}{ccccc}
5 & 7 & 9 & 11 \\
& 2 & 2 & 2
\end{array}
$$

The third difference is a constant so the corresponding polynomial will be of the form-

$$
P(n)=a_{0}+a_{1} n+a_{2} n^{\wedge} 2+a_{3} n^{\wedge} 3
$$

To solve for the $\mathrm{a}_{\mathrm{n}} \mathrm{s}$ we need to evaluate the simultaneous equations-

$$
\begin{aligned}
& 1=a_{0} \\
& 5=a_{0}+a_{1}+a_{2}+a_{3} \\
& 14=a_{0}+2 a_{1}+4 a_{2}+8 a_{3} \\
& 30=a_{0}+3 a_{1}+9 a_{2}+27 a_{3}
\end{aligned}
$$

These yield $a_{0}=1, a_{1}=13 / 6, a_{2}=3 / 2$, and $a_{3}=1 / 3$.
Thus we have -

$$
P(n)=(1 / 6)\left[6+13 n+9 n^{\wedge} 2+2 n^{\wedge} 3\right]
$$

with-

$$
S(n)=\{1,5,14,30,55,91,140,204, . .\}
$$

Note that $\mathrm{S}(100)=348551$. In looking at neighboring terms we see $5-1=2^{\wedge} 2,14-5=3 \wedge 2,30-14=4^{\wedge} 2$ etc..
This implies that-

$$
S(n+1)=S(n)+(n+2)^{\wedge} 2
$$

So that we are dealing with the sum of the squares of the first $n$ integers.
Take next the sequence-

$$
S(n)=\{1,3,7,13,21,31, . .\}
$$

Taking differences between neighbors, shows that the corresonding polynomial is quadratic. Evaluating its coefficients produces-

$$
P(n)=1+n+n^{\wedge} 2
$$

## A plot of $\mathrm{P}(\mathrm{n})$ versus the elements $\mathrm{S}(\mathrm{n})$ follows-



All of the above examples have started with $\mathrm{S}(\mathrm{n})$ to produce the corresponding polynomial $\mathrm{P}(\mathrm{n})$. The reverse can also be carried out and is often much easier. Consider the third order polynomial-

$$
P(n)=1+3 n+2 n^{\wedge} 2+4 n^{\wedge} 3
$$

Here $P(0)=1, P(1)=10, P(2)=47, P(3)=136, P(4)=301$. So the corresponding infinite sequence becomes-

$$
S(n)=\{1,10,47,136,301, . .\}
$$

A plot of $P(n)$ in $n=-4 . .5$ and the corresponding points $S(n)$ for $n$ in $0<n<5$ follow-


Note that if one allowed negative integers in our sequence then $\mathrm{S}(\mathrm{n})$ would contain the extra elements $P(-1)=-4, P(-2)=-29, P(-3)=-98$, etc..

Finally consider the quadratic polynomial $P(n)=(1 / 2)\left[n+n^{\wedge} 2\right]$. Here we have-
$P(1)=1$
$P(2)=1+2=3$
$P(3)=1+2+3=6$
$P(4)=1+2+3+4=10$
$P(5)=1+2+3+4+5=15$

So that $S(n)=\{1,3,6,10,15, .$.$\} . The elements in S(n)$ thus just represent the sum of subsequent integers added up through $n$. That is $P(100)=5050$.
U.H.Kurzweg

October 12, 2021
Gainesville, Florida

