QUAD NUMBERS AND THE FACTORING OF SEMI-PRIMES

INTRODUCTION:

In an earlier article on this Web Page we showed that any semi-prime $N=p q$ can be factored into its two prime components-

$$
\mathrm{p}=(\mathrm{R}+\Delta)-\mathrm{a} \quad \text { and } \quad \mathrm{q}=(\mathrm{R}+\Delta)+\mathrm{a}
$$

by solving the Diophantine Equation-

$$
a^{\wedge} 2=\left(R^{\wedge} 2-N\right)+2 R \Delta+\Delta^{\wedge} 2
$$

Here $2 a=(q-p)$ equals the prime number difference and R is the nearest integer above sqrt(N). This result means that the factoring of any semi-prime N is uniquely determined by the following four component quad -

$$
\mathrm{Q}=[\mathrm{N}, \mathrm{R}, \mathrm{a}, \Delta]
$$

So, for instance $\mathrm{Q}=[2701,52,18,3]$ means that it represents the semi-prime $\mathrm{N}=2701$ and its prime components $p=(52+3)-18=37$ and $q-(52+3)+18=73$. We wish to show in this article more details on how the components of a quad Q are obtained .

FINDING a AND \triangle AND HENCE Q:

To find a and Δ for any N we start with a given semi-prime N and then pick a new integer R lying directly above the non-integer sqrt(N). Having obtained N and R we next go to the one-line computer program-
for Δ from b to c do $\left(\left\{\Delta, \operatorname{sqrt}\left(-N+(R+\Delta)^{\wedge} 2\right)\right\}\right)$ od;
Here b is an integer sufficiently large to include the integer value of Δ. The integer c is larger than the integer value $f \Delta$. Running the program for some ten specific cases of N, we obtain the following table-

Integer Solutions of $\mathrm{a}=\operatorname{sqrt}\left[-\mathrm{N}+(\mathrm{R}+\Delta)^{\wedge} 2\right]$					
$N=77$	$\mathrm{R}=9$	$a=2$	$\Delta=0$	$\mathrm{p}=7$	$q=11$
$N=779$	$\mathrm{R}=28$	$\mathrm{a}=11$	$\Delta=2$	$\mathrm{p}=19$	$q=41$
$N=2701$	$\mathrm{R}=52$	$a=18$	$\Delta=3$	$\mathrm{p}=37$	$q=73$
$N=11303$	$\mathrm{R}=107$	$\mathrm{a}=19$	$\Delta=1$	$\mathrm{p}=89$	$\mathrm{q}=127$
$N=455839$	$\mathrm{R}=676$	$a=81$	$\Delta=4$	$\mathrm{p}=599$	$q=761$
$N=7828229$	$\mathrm{R}=2798$	$a=670$	$\Delta=79$	$\mathrm{p}=2207$	$q=3547$
$N=28787233$	$\mathrm{R}=5366$	$a=2076$	$\Delta=387$	$p=3677$	$q=7829$
$N=76357301$	$\mathrm{R}=8739$	$a=1082$	$\Delta=66$	$\mathrm{p}=7723$	$q=9887$
$\mathrm{N}=169331977$	$\mathrm{R}=13013$	$a=6732$	$\Delta=1638$	$\mathrm{p}=7919$	$q=21383$
$N=3330853711$	\|R=57714	$a=12633$	$\Delta=1366$	$\mathrm{p}=46447$	$q=71713$
Here R is the nearest integer above $\operatorname{sgrt}(N)$ and$\mathrm{p}=\mathrm{R}+\Delta-\mathrm{a} \quad \text { and } \quad \mathrm{q}=\mathrm{R}+\Delta+\mathrm{a}$					

We see from the table that the quad numbers satisfy

$$
N>R>a>\Delta
$$

and R, a, and Δ increase rapidly in value as N increases. There is no obvious relation for a and Δ as one changes from one semi-prime N to another. The best one can do is to start the search with $b=0$ and go to $c=200$ to see if an integer factor exists. If not repeat the search with $b=200$ and go to $c=400$.If the factors are found stop. If not repeat the search with trials 400 to 600 . Eventually the integer values for a and Δ will be found. Let us demonstrate things for the semiprime $N=81811999$, where $R=9045$. Here the first trial run from $b=0$ to $c=200$ already fields the integers $\mathrm{a}=999$ for $\Delta=55$. This produces the unique quad-

$$
\mathrm{Q}=[81811999,9045,999,55]
$$

, with the prime factors-

$$
\mathrm{p}=(9045+55)-999=8101 \quad \text { and } \quad \mathrm{q}=(9045+55)+999=10099
$$

As a second example consider factoring $N=44526491$ where $R=6673$. This time it takes three 200 point trials to finds $\Delta=581$ at $\mathrm{a}=2345$. So we have the quad-

$$
Q=[44526491,6673,2345,581]
$$

with the prime factors-

```
p=(6673+581)-2345=4409 and q=(6673+581)+2345=10099
```

Sometimes one can skip the lower 200 point trials when N is large and neighboring $\Delta \mathrm{s}$ become large.

CONCLUDING REMARKS:

We have shown that any semi-prime can be factored into its two prime components by solving the formula-

$$
\left(a^{\wedge} 2+N\right)=(R+\Delta)^{\wedge} 2
$$

for integer a and Δ for a known N and R. The resultant solution can be written into a compact form via a unique Quad Number-

$$
Q=[N, R, a, \Delta]
$$

One of the lowest of these quads is $Q=[15,4,1,0]$ corresponding to $N=15$ with $p=3$ and $q=5$.
U.H.Kurzweg

May 18, 2023
Gainesville, Florida

