VARIATIONS ON THE SIGMA FUNCTION

It is known from our earlier work that $f(N)=[\operatorname{sigma}(N)-N-1] / N$ will vanish whenever N is a prime number. Here $\sigma(N)$ is the sigma function of number theory and the parameter $f(N)$ has been termed by us as the number fraction for any integer N. Since $f(N)$ vanishes when N equals a prime p, it must also be true that-

$$
\sigma(p)=1+p
$$

If we replace p by p^{2} and expand $\sigma\left(p^{2}\right)$, we arrive at-

$$
\sigma\left(p^{2}\right)=1+p+p^{2} .
$$

Generalizing, we have a new identity for primes p given as-

$$
\sigma\left(p^{n}\right)=\sum_{k=0}^{n} p^{\wedge} k
$$

Thus we find-

$$
\sigma(25)=1+5+25=31 \text { and } \sigma(243)=1+3+3^{2}+3^{3}+3^{4}+3^{5}=364
$$

Note that we can also make us of the properties of a finite geometric series to simplify these last two sigma values. The formula for doing this is to start with a finite geometric series, say-

$$
S(p, n)=1+p+p^{\wedge} 2+p^{\wedge} 3+\ldots+p^{\wedge} n
$$

Next we look at the infinite geometric series $\left.S(a, \infty)=S(a, n)+a^{\wedge}(n+1)+a^{\wedge}(n+2)+\ldots.\right)=1 /(1-a)$
Manipulating things we find -

$$
S(a, n)=1 /(1-a)-a^{\wedge}(n+1) /(1-a)=\left[1-a^{\wedge}(n+1)\right] /[1-a]
$$

So if, as in the above example, we take $a=5$ and $n=2$, we get 31 . Also if we take $a=3$ and $n=5$, we get 364 . In addition, for all primes, we have -

$$
\sigma\left(\mathrm{p}^{\wedge} \mathrm{n}\right)=\mathrm{S}(\mathrm{p}, \mathrm{n})=\left[\frac{1-\mathrm{p}^{\wedge}(n+1)}{1-p}\right]
$$

, where p is any prime number and n its integer power. With this modified formula, we see, for example, that-

$$
\sigma(37 \wedge 5)=\sigma(69343957)=71270178
$$

Note that sigma is slightly larger than N. This is predicted by the above $S(p, n)$ formula.
Expanding our discussion to $\sigma\left(p^{\wedge} n q^{\wedge} m\right)$, we find the new and altered form for the sigma function is given as-

$\sigma\left[\left(p^{\wedge} n\right)\left(q^{\wedge} m\right)\right]=\left\{\left[1-p^{\wedge}(n+1)\right]\left[1-q^{\wedge}(m+1)\right] /[(1-p)(1-q)]\right.$

This will work for any primes p and q taken to integer powers n and m, respectively.
Let us try things out for $\mathrm{p}=3$ and $\mathrm{q}=5$ with powers $\mathrm{n}=2$ and $\mathrm{m}=3$. We have-

$$
\sigma(1125)=(1-27)(1-625) /(8)=2028
$$

There is also no major difficulty to go to much larger values of $N=\left(p^{\wedge} n\right)\left(q^{\wedge} m\right)$. Take the case $\mathrm{N}=127^{\wedge} 12^{*} 719^{\wedge} 18=$

46426364668528079561476873255102423900021409188113580827655620805
747601393761. This yields in a split second that-
$\sigma(\mathrm{N})=$
468600017351693917075334673657770860994607417331048616864023427823
94796330161
Note that for such large Ns , which are often encountered in cryptography, the values of N and σ lie fairly close to each other.

We can also use the above results to factor semi-primes $N=p q$. One finds that-

$$
f(p q)=(p+q) /(p q) \text { and } \sigma(p q)=(1+p)(1+q)
$$

Upon letting the average value of p and q be given by $S=(p+q) / 2$, we find the semi-prime $N=p q$ factors into its two prime components as-

$$
[\mathrm{p}, \mathrm{q}]=\mathrm{s} \mp \sqrt{S^{2}-N}
$$

Take the case of $N=1769$ where $f(N)=[$ sigma(N) $-N-1] / N=90 / 1769=(p+q) / 1769$. This produces S=90/2=45 so that -

$$
[p, q]=45 \mp \sqrt{2025-1769}=[29,61] .
$$

Such solutions can be obtained quickly as long as $\sigma(N)$ can be evaluated on one's computer. With my MAPLE program, I have no problem finding the values of $\sigma(N)$ as long as N stays below about twenty digits or so. Future attempts to find values of $\sigma(\mathrm{N})$ beyond this, should make it possible to factor semi-primes for Ns falling into the one hundred digit range such as encountered in modern day electronic cryptography.

U.H.Kurzweg

September 10, 2022
Gainesville, Florida

