VOID FRACTION PRODUCED BY DRILLING A CYLINDRICAL HOLE THROUGH
 THE CENTER OF A SPHERE

Consider a solid sphere of radius R through which is drilled a cylindrical hole of radius r. It is assumed that $r<R$ so that the void fraction, equal to the ratio of hole volume to sphere volume, lies in the range $0<\epsilon<1$. It is our purpose here to show that the resultant void fraction equals-

$$
\epsilon=\left[1-\sqrt{1-x^{2}}+x^{2} \sqrt{1-x^{2}}\right]
$$

using a combination of both spherical and cylindrical geometric calculations.

To prove this result, we start with the following sketch-

This shows the side-view of a sphere of radius R with a vertical cylindrical hole of diameter $2 r$ drilled into it. Each of the two spherical caps shown in orange have the volume-

$$
\mathrm{V}_{\text {cap }}=\left[2 \pi \int_{r=0}^{R} r^{2} d r \int_{\theta=0}^{b} \sin (\theta) d \theta\right]-\pi r^{2} \mathrm{H} / 3 \text { with } \cos (\mathrm{b})=\mathrm{H} / \mathrm{R}=\sqrt{1-x^{2}} \text { and } x=r / R
$$

On integrating this volume reads-

$$
V_{\text {cap }}=\left(\pi \frac{R^{3}}{3}\right)\left[2-\sqrt{1-x^{2}}\left(2+\mathrm{x}^{2}\right)\right]
$$

Note here that the term $\pi r^{2} \mathrm{H} / 3$ in the above equation represents the cone shown in blue. Next we look at the entire volume of the hole. It equals-

$$
\mathrm{V}_{\text {hole }}=2 \mathrm{~V}_{\text {cap }}+2 \pi \mathrm{r}^{2} \mathrm{H}=\left[4 \pi \mathrm{R}^{3} / 3\right]\left\{1-\sqrt{1-x^{2}}+x^{2} \sqrt{\left.1-x^{2}\right\}}\right.
$$

You will recognize that $V_{\text {sphere }}=4 \pi R^{3} / 3$ is just the volume of the original sphere of radius R. This leaves us with the definition of the void fraction as-

$$
\varepsilon=\left(\mathrm{V}_{\text {hole }} / \mathrm{V}_{\text {sphere }}\right)=\left\{1-\sqrt{1-x^{2}}+x^{2} \sqrt{1-x^{2}}\right\}
$$

Recall that $\mathrm{x}=\mathrm{r} / \mathrm{R}$, so that $\varepsilon=0$ when x vanishes and $\varepsilon=1$ for $\mathrm{x}=1$. At $\mathrm{x}=0.5$ we find $\varepsilon=0.6083087$. Here is a plot of hole to sphere radius versus epsilon-

For small holes such as used in stringng together a pearl necklace, the value of epsilon equals-

$$
\varepsilon \sim\left(\frac{3}{2}\right) x^{2} \quad \text { with } \quad x<0.1
$$

We can also calculate the surface area of the top of one of the orage caps. Using spherical coordinates, we find the area to be-

$$
\mathrm{S}_{\mathrm{cap}}=\mathrm{R}^{2} \int_{\theta=0}^{b} \sin (\theta) d \theta \int_{\varphi=0}^{2 \pi} d \varphi=2 \pi R^{2}\left[1-\operatorname{sqrt}\left(1-x^{2}\right)\right]
$$

If $x=1$, the cap has an area of half the sphere surface.

We can also go on and find the circumference of a great circle for a sphere of radius R. Using spherical coordinates, we have that the circumference of a circle of radius r, circumscribing the above described hole, is -

$$
C=2 \pi r=2 \pi R x \text { with } x=r / R
$$

The circumference of the sphere's equator is then is found by setting $x=1$. This circumference equals the well known result $C=2 \pi R$. When this circle is made to pass through two points A and B on the sphere's surface, one has what is known as the great circle route. It is the shortest distance, although on a Merkator (Flemish cartographer 1512-1594) projection, it appears longer. Another way to look at such a geodesic path through points A and B is to say that it represents the intersection of a plane passing through the sphere center and the sphere surface.

U.H.Kurzweg
September 16, 2022
Gainesvile, Florida
My $86^{\text {th }}$ Birthday

