VALUES OF THE RIEMANN ZETA FUNCTION

One of the better known mathematical functions is the Riemann Zeta Function defined as-

$$\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \ldots = \prod_{n=1}^{\infty} \frac{1}{n^s}$$ provided that real \(s > 1\)

Its values for other \(s = \sigma + \imath \tau\) are determined by analytic continuation. The function can be multiplied by \((1-1/2^s)\) to yield-

$$\left(1 - \frac{1}{2^s}\right) \zeta(s) = 1 + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{9^s} + \frac{1}{11^s} + \frac{1}{13^s} + \frac{1}{15^s} + \ldots$$

, remembering that we keep the real part of \(s\) greater than one. Also we have-

$$\left(1 - \frac{1}{2^s}\right) \left(1 - \frac{1}{3^s}\right) \zeta(s) = 1 + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{11^s} + \frac{1}{13^s} + \frac{1}{17^s} + \frac{1}{19^s} + \frac{1}{23^s} + \frac{1}{25^s} + \ldots$$

Continuing one reaches -

$$\prod_{n=1}^{\infty} \left(1 - \frac{1}{p(n)^s}\right) \zeta(s) = 1$$

, where \(p(n)\) is the \(n\)th prime. Rewriting this last result yields the remarkable formula-

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{n=1}^{\infty} 1/[1 - \frac{1}{p(n)^s}]$$

, first discovered by Leonard Euler some 250 years ago. It was one of the first functions found expressible both as an infinite sum and an infinite product. At \(s = 2\) it reads-

$$\zeta(2) = \frac{4 \cdot 9 \cdot 25 \cdot 49 \cdot 121 \cdot 169}{3 \cdot 8 \cdot 24 \cdot 48 \cdot 120 \cdot 168} \ldots = 1.644934067\ldots$$

Next looking more at the expression \((1-1/2^s)\zeta(s)\), we find-

$$\zeta(s) = \frac{2^s}{(2^s - 1)} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^s}$$
With all terms in the sum being reciprocal of odd integers. If one takes \(s=2 \), we re-obtain the earlier result:

\[
\zeta(2) = \frac{4}{3} \left\{ 1 + \frac{1}{9} + \frac{1}{25} + \frac{1}{49} + \frac{1}{81} + \frac{1}{121} + \ldots \right\} = 1.6449340668482264\ldots
\]

It was first shown by Euler, by another means, that this result is equivalent to \(\zeta(2) = \frac{\pi^2}{6} \).

It will be our purpose here to use some of the above formulas to find additional values of the Zeta Function \(\zeta(s) \) for different \(s \) including complex ones.

We begin by re-writing \(\zeta(2) \) as-

\[
\frac{\pi^2}{6} \cdot \frac{3}{4} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}
\]

Taking the difference of \(\zeta(2) \) with this produces-

\[
\frac{\pi^2}{24} = \sum_{n=1}^{\infty} \left\{ \frac{(3n-1)(n-1)}{n^2(2n-1)^2} \right\} = \frac{5(1)}{4(9)} + \frac{8(2)}{9(25)} + \frac{11(3)}{16(49)} + \ldots = 0.4112335167\ldots
\]

Another identity which follows from the above formulas is-

\[
\frac{\pi^2}{12} = \sum_{n=1}^{\infty} \frac{-2n^2 + 4n - 1}{n^2(2n-1)^2}
\]

We continue by looking at \(\zeta(3) \) and \(\zeta(4) \). We can here use the above series for \(\zeta(s) \) to write-

\[
\zeta(3) = \frac{8}{7} \left\{ 1 + \frac{1}{3^3} + \frac{1}{5^3} + \frac{1}{7^3} + \frac{1}{9^3} + \frac{1}{11^3} + \ldots \right\} = 1.20205690915095942854\ldots
\]

and-

\[
\zeta(4) = \frac{16}{15} \left\{ 1 + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{7^4} + \frac{1}{9^4} + \frac{1}{11^4} + \ldots \right\} = 1.0823232337111381916\ldots = \frac{\pi^4}{90}
\]

Continuing on we get-
\[
\zeta(5) = \frac{32}{31} \left\{ 1 + \frac{1}{3^5} + \frac{1}{5^5} + \frac{1}{7^5} + \frac{1}{9^5} + \frac{1}{11^5} + \ldots \right\} = 1.0369277551433699263\ldots
\]

and-

\[
\zeta(6) = \frac{64}{63} \left\{ 1 + \frac{1}{3^6} + \frac{1}{5^6} + \frac{1}{7^6} + \frac{1}{9^6} + \frac{1}{11^6} + \ldots \right\} = 1.0173430619844491398\ldots = \frac{\pi^6}{945}
\]

We note in all the above examples that \(\zeta(2n) \) has values given as \(\frac{\pi^{2n}}{\text{integer}} \) as long as \(n \) remains 12 or less. The odd function \(\zeta(2n+1) \) does not obey such a law. A few additional even Zeta Functions yield the values of \(\zeta(8) = \frac{\pi^8}{9450}, \zeta(10) = \frac{\pi^{10}}{93555}, \) and \(\zeta(12) = \frac{\pi^{12}}{924041.7887} \). The last no longer has an integer denominator. A plot of \(\zeta(s) \) versus \(s \) follows-

Note the singularity at \(s=1 \) corresponding to the harmonic series. When \(s \) gets large we have the approximation-

\[
\zeta(8) \approx \left\{ \frac{2^8}{2^8 - 1} \right\} \left\{ \frac{3^8}{3^8 - 1} \right\} = 1.004074\ldots
\]

This result compares with the exact result \(\zeta(8) = \frac{\pi^8}{9450} = 1.004077.. \)
We continue on and look at the Zeta Function when $s=\sigma+i\tau$ is complex. Writing out the Zeta Function for $s=\sigma+i\tau$, we get -

$$\zeta(\sigma + i\tau) = \sum_{n=1}^{\infty} \frac{\cos(\tau \ln(n)) - i \sin(\tau \ln(n))}{n^{\sigma}}$$

Next choosing $s=1+i$ we find-

$$\zeta(1 + i) = \sum_{n=1}^{\infty} \frac{\cos(\ln(n)) - i \sin(\ln(n))}{n} = 0.5821580598 - i0.92684856435$$

This checks with our MAPLE computer program for the same s. Trying next the complex form $s=\sigma+i\tau=1/2+i2$, we find our sum to equal-

$$\zeta(1/2+2i)=0.4405456503-i0.31164633845$$

Note this time the real part of s was less than one yet still the series representation gave the correct value for the Zeta Function. The line $s=1/2+i\tau$ is of historical interest because, as Bernhard Riemann first conjectured, it is the only line in the $s=\sigma+i\tau$ plane (with the exception of s equal to negative even integers) where zeros exist. Here is a contour graph of the first three zeros along the $\sigma=1/2$ axis.
Notice all the circles graphed fall along the \(\tau = 1/2 \) line. We have found no other zeros except along this line and the negative even values \(s = -2n \). A formal proof will follow by looking at the location of all small circle contours in the s plane.

U.H. Kurzweg
March 5, 2020
Gainesville, Florida