SOLUTION OF THE BRAHMAGUPTA -PELL EQATION

One of the more interesting non-linear Diophantine equations is the Brahmagupta-Pell equation fist studied in detail by the Indian Mathematician Brahmagupta(598-670 AD). It reads-

$$y^2 = 1 + Ax^2$$

or the equivalent form-

$$y = x\sqrt{A} + \frac{1}{y + x\sqrt{A}}$$

, which can be expanded into a continued fraction. Here A is any positive integer not equal to a square. One tries to solve this equation in the form $[x_n, y_n]$, neglecting the obvious lowest solution of $[x_0, y_0] = [0, 1]$. Note that the name of Pell is also attached to this equation due to a translation error by Euler. The English mathematician Pell never had anything to do with the equation.

Let us begin our analysis of the B-P Equation by looking at the simplest case of A=2. Here one needs only to apply a one line computer program to generate the integer solutions. The program reads-

for n from 1 to b do({n,sqrt(1+2x^2)]od

We find the integer solutions through b=7 to be-

n	Xn	Уn
1	2	3
2	12	17
3	70	99
4	408	577
5	2378	3363
6	13860	19601
7	80782	114243

Looking at the ratios x_{n+1}/x_n we get 6, 5.8333, 5.82857, 5.82843, 5.828427, and 5.82842712.

So the ratio as n gets large approach the value $f=y_1+x_1sqrt(2)=3+2sqrt(2)=5.828427125...$. So we have a good idea of where x_{n+1} lies compared to x_n . The value of x_8 will lie near 80782*5.82842715=470832.002. The exact number is 470832. The ratio of y_n/x_n equals approximately sqrt(2). Thus y_8 becomes 665857. Another observation following from the table is that $x_{2n}=2y_nx_n$. So we get as follows-

 $x_2=2x_1y_1=2(2\cdot 3)=12$, $x_4=2x_2y_2=2\cdot 12\cdot 17=408$, and $x_8=2\cdot 408\cdot 577=470832$.

As the next specialized form of the B-P Equation consider-

y^2=1+3x^3

Here the solution table reads-

n	x	Y
1	1	2
2	4	7
3	15	26
4	56	97
5	209	362
6	780	1351
7	2911	5042

From the table we see that f=2+1sqrt(3)=3.73205088.. and we have approximately that $x_{n+1}=f x_n$ and $y_n=$ sqrt(3) x_n . We can thus estimate that the seventh solution occurs very near $x_7=780(3.7320508)=2910.99967$ and $y_7=$ sqrt(3)(2910.99967)=5041.99926. The closeness of these approximate values makes it an easy job to find x_n and y_n at any larger n for a given A.

We also again have that $x_{2n}=2x_n \cdot y_n$ and $y_{2n}=sqrt(1+3(x_{2n})^2)$ for A=3.Thus $x_4=2x_2sqrt(1+3\cdot x_2^2)=56$.

The above exact and approximate solutions for A=2 and A=3 continue to work for all other integer A provided that A is not the square of an integer. The important information which makes the solutions possible for any positive n is the irrational number-

 $f=y_1+sqrt(A)x_1$

involving the square root of A.

Take next the special B-P Equation-

y^2=1+13x^2

Here a computer search yields the lowest non-trivial solution to be $[x_1,y_1] = [180,649]$. In this case f=649+180sqrt(13)=1297.9923. So we expect x₂ to be 233640 and y₂ to be 842401. X₃ will have the very large value-

 $x_3 = f \cdot x_2 = 1298 \cdot 233640 = 303264720$

As Brahmagupta already showed some 14 hundred years ago, it is possible to write the solution to his equation as-

So if we take k=1, $a=x_1 = and b=y_1$, we find-

Summarizing the above , we can say , that for any A not equal to the square of an integer, we have the exact general solution-

 $x_{2n}=2x_ny_n$ and $y_{2n}=sqrt(1+A(x_{2n})^2)=1+2A(x_n)^2$

exactly. To fill the gaps in xn we use the approximation-

 $x_{n+1} \approx x_n[y_1 + x_1 \text{sqrt}(A)]$ and $y_{n+1} \approx x_{n+1} \text{sqrt}(A)$

To test out these general results consider the case of A=40. We first do a computer search at n=1 and n=2. This produces $x_1=3$, $y_1=19$, $x_2=114$, $y_2=721$. From it we have $f=y_1+x_1$ sqrt(40)=37.97366596. Next we look at $[x_3,y_3]$. By our approximation we have –

 $x_3 \approx 114^{*}f=4328.9979$ and $y_3 \approx x_3 sqrt(40)=27378.9867$

This means x_3 =4329 and y_3 =27379. For x_4 we get $2x_2y_2$ = 164388 and

y₄=1+2sqrt(40)114^2=1039681. Collecting these results for A=40 produces the table-

n	x _n	y n
1	3	19
2	114	721
3	4329	27379
4	164388	1039681

Note that this time f is quite large compared to earlier results at lower A. This results in the spacing between roots and also the intial value $[x_1,y_1]$ to become quite large. For example, we find $[x_1,y_1]=[3588,24335]$ for the particular value of A=46. I leave it to the reader to figure out how I obtained this large initial starting value.

U.H.Kurzweg November 23, 2021 Gainesville, Florida