SOLUTION OF THE BRAHMAGUPTA -PELL EQATION

One of the more interesting non-linear Diophantine equations is the Brahmagupta-Pell equation fist studied in detail by the Indian Mathematician Brahmagupta(598-670 AD). It reads-

$$
y^{2}=1+A x^{2}
$$

or the equivalent form-

$$
\mathrm{y}=x \sqrt{A}+\frac{1}{y+x \sqrt{A}}
$$

, which can be expanded into a continued fraction. Here A is any positive integer not equal to a square. One tries to solve this equation in the form [x_{n}, y_{n}], neglecting the obvious lowest solution of $\left[x_{0}, y_{0}\right]=[0,1]$. Note that the name of Pell is also attached to this equation due to a translation error by Euler. The English mathematician Pell never had anything to do with the equation.

Let us begin our analysis of the B-P Equation by looking at the simplest case of $A=2$. Here one needs only to apply a one line computer program to generate the integer solutions. The program reads-

for n from 1 to b do(\{n,sqrt(1+2x^2)]od

We find the integer solutions through $b=7$ to be-

n	x_{n}	y_{n}
1	2	3
2	12	17
3	70	99
4	408	577
5	2378	3363
6	13860	19601
7	80782	114243

Looking at the ratios x_{n+1} / x_{n} we get $6,5.8333,5.82857,5.82843,5.828427$, and 5.82842712.
So the ratio as n gets large approach the value $f=y_{1}+x_{1} s q r t(2)=3+2 \operatorname{sqrt}(2)=5.828427125$... . So we have a good idea of where x_{n+1} lies compared to x_{n}. The value of x_{8} will lie near $80782 * 5.82842715=470832.002$. The exact number is 470832 . The ratio of y_{n} / x_{n} equals approximately sqrt(2). Thus y_{8} becomes 665857 . Another observation following from the table is that $x_{2 n}=2 y_{n} x_{n}$. So we get as follows-

$$
x_{2}=2 x_{1} y_{1}=2(2 \cdot 3)=12, x_{4}=2 x_{2} y_{2}=2 \cdot 12 \cdot 17=408, \text { and } x_{8}=2 \cdot 408 \cdot 577=470832 \text {. }
$$

As the next specialized form of the B-P Equation consider-

$$
y^{\wedge} 2=1+3 x^{\wedge} 3
$$

Here the solution table reads-

n	X	Y
1	1	2
2	4	7
3	15	26
4	56	97
5	209	362
6	780	1351
7	2911	5042

From the table we see that $f=2+1$ sqrt(3) $=3.73205088$.. and we have approximately that $x_{n+1}=f x_{n}$ and $y_{n}=s q r t(3) x_{n}$. We can thus estimate that the seventh solution occurs very near $x_{7}=780(3.7320508)=2910.99967$ and $y_{7}=s q r t(3)(2910.99967)=5041.99926$. The closeness of these approximate values makes it an easy job to find x_{n} and y_{n} at any larger n for a given A.

We also again have that $x_{2 n}=2 x_{n} \cdot y_{n}$ and $y_{2 n}=\operatorname{sqrt}\left(1+3\left(x_{2 n}\right)^{\wedge} 2\right)$ for $A=3$.Thus $x_{4}=2 x_{2}$ sqrt $\left(1+3 \cdot x_{2} \wedge 2\right)=56$.

The above exact and approximate solutions for $A=2$ and $A=3$ continue to work for all other integer A provided that A is not the square of an integer. The important information which makes the solutions possible for any positive n is the irrational number-

$$
f=y_{1}+\operatorname{sqrt}(A) x_{1}
$$

involving the square root of A.
Take next the special B-P Equation-

$$
y^{\wedge} 2=1+13 x^{\wedge} 2
$$

Here a computer search yields the lowest non-trivial solution to be $\left[x_{1}, y_{1}\right]=[180,649]$. In this case $f=649+180$ sqrt(13) $=1297.9923$. So we expect x_{2} to be 233640 and y_{2} to be 842401 . X_{3} will have the very large value-

$$
x_{3}=f \cdot x_{2}=1298 \cdot 233640=303264720
$$

As Brahmagupta already showed some 14 hundred years ago, it is possible to write the solution to his equation as-

$$
x=2 a b / k \text { and } y=\left(b^{\wedge} 2+13 a^{\wedge} 2\right) / k
$$

So if we take $k=1, a=x_{1}=$ and $b=y_{1}$, we find-

$$
\mathrm{x}=\mathrm{x}_{2}=233640 \text { and } \mathrm{y}=\mathrm{y}_{2}=842401
$$

Summarizing the above, we can say, that for any A not equal to the square of an integer, we have the exact general solution-

$$
x_{2 n}=2 x_{n} y_{n} \quad \text { and } \quad y_{2 n}=\operatorname{sqrt}\left(1+A\left(x_{2 n}\right)^{\wedge} 2\right)=1+2 A\left(x_{n}\right)^{\wedge} 2
$$

exactly. To fill the gaps in x_{n} we use the approximation-

$$
x_{n+1} \approx x_{n}\left[y_{1}+x_{1} \operatorname{sqrt}(A)\right] \text { and } y_{n+1} \approx x_{n+1} \operatorname{sqrt}(A)
$$

To test out these general results consider the case of $A=40$. We first do a computer search at $n=1$ and $n=2$. This produces $x_{1}=3, y_{1}=19, x_{2}=114, y_{2}=721$. From it we have $f=y_{1}+x_{1} \operatorname{sqrt}(40)=37.97366596$. Next we look at $\left[x_{3}, y_{3}\right]$. By our approximation we have -

$$
x_{3} \approx 114 * f=4328.9979 \quad \text { and } \quad y_{3} \approx x_{3} \operatorname{sqrt}(40)=27378.9867
$$

This means $x_{3}=4329$ and $y_{3}=27379$. For x_{4} we get $2 x_{2} y_{2}=164388$ and $\mathrm{y}_{4}=1+2 \operatorname{sqrt}(40) 114^{\wedge} 2=1039681$. Collecting these results for $\mathrm{A}=40$ produces the table-

n	x_{n}	y_{n}
1	3	19
2	114	721
3	4329	27379
4	164388	1039681

Note that this time f is quite large compared to earlier results at lower A. This results in the spacing between roots and also the intial value $\left[\mathrm{x}_{1}, \mathrm{y}_{1}\right]$ to become quite large. For example, we find $\left[x_{1}, y_{1}\right]=[3588,24335]$ for the particular value of $A=46$. I leave it to the reader to figure out how I obtained this large initial starting value.
U.H.Kurzweg

November 23, 2021
Gainesville, Florida

