
                 PROPERTIES OF ELLIPTIC CURVES AND THEIR  

                       USE IN FACTORING LARGE NUMBERS 

 

 
A very important set of curves which has received considerably attention in recent years  

in connection with the factoring of large numbers are the elliptic curves-  

 

                                            baxxy ++= 32
 

 

where a and b are integers. We will discuss here some of their properties and then show 

how they can be used to factor large numbers. Our starting point will be to look at several 

specific examples. We show you the cases of (1) a=-b=1 and (2) a=-9, b=2 below-  

 

 
 

                   

    

Note that the graphs are symmetric about the x axis and that the derivative becomes 

infinite at one or three distinct values of x. Also the curves go to ±∞ as x→+∞. The first 

and second derivatives of these curves are given by- 
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For a>0, there are no points where the derivative is zero and inflection points are 

encountered when the numerator of the second derivative vanishes. The curves become 

singular when dy/dx=0/0 and thus when 3x
2
=-a and y=0 simultaneously.  

 

Next consider  two neighboring points P(x1,y1) and Q(x2,y2) lying along the upper branch 

of the curve for x>0. If we draw a straight line through these points they will generally 

intersect the curve at a third point R(x3,y3). The equation for this straight line will be- 
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where s is its slope 
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Of particular interest for number factoring is the limiting case where P and Q coincide. 

Under that condition s can be replaced by the derivative at P(x1,y1) and one finds on 

equating the straight line to the cubic we have at x=x3 that- 
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This result may be rewritten as the cubic- 
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Looking at just the coefficient of the x
2 

term and setting it to zero ( since an elliptic curve 

has no quadratic term), we find that- 
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since x1=x2 when P=Q. It also follows that- 
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to yield a unique point R(x3,y3). For the case (1) above where a=1 and b=-1, we find 

R(2,3) if one takes P(1,1)=Q(1,1). For the case (2) where a=-9 and b=2, we find 

R(69/2, 571sqrt(2)/4) when P(3,sqrt(2))=Q(3,sqrt(2). We test this result by plugging into 

the cubic curve to find- 

 

                (571sqrt(2)/4)
2
=(69/2)

3 -
9(69/2)+2=40755.12499..           

 

which checks. In standard mathematical notation one calls R(x3,y3)=2P(x1,y1).  

 

Another particularly interesting elliptic curve is- 
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It is rich in integer solutions starting with [x1,y1]=[3,4] followed by [6,14], 

[11,36],[18,76],etc. These points along the upper branch of the solution curve are easiest 

to determine by substituting subsequent values of x into the equation and then seeing 

which sum equals the square of an integer. We find that x n+1=xn+(2n+1) for the integer 

solution pair[xn+1 ,yn+1]. A little manipulation then predicts the very simple result- 
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Thus the integer point [9803, 970596] is guaranteed to lie on the solution curve. 

 

Next we demonstrate how one can use elliptic integrals to factor a number N. The idea 

behind this approach is due to H. Lenstra (An.of Math126,649-673,1987) and works as 

follows. Take the first elliptic curve mentioned above and choose the simple composite 

number N=333. We write- 

 

         333)(mod132 =−+= NwithNxxy  

 

This elliptic curve has the simple integer point P(1,1) lying along it and we have already 

shown that another point is R(2,3). To get a point further out on the upper branch of the 

curve we must first do a bit of manipulation involving modular arithmetic. We note that 

the derivative of the curve at (2,3) is 13/6 and that this will not produce a larger value for 

a new x3. To get an x3 further out along the upper branch of the curve we must first 

manipulate the 13/6 derivative term by carrying out a Euclidian Algorithm on the 

numbers N=333 and 6. Calculating first the greatest common divisor (gcd), we have- 
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Looking at the remainder 3 in the first equation, we have the gcd(333,6)=3. So we see at 

once that 6 and 333 are both factored by 3 and hence- 

 

                                 1113333 ⋅=  

 

Furthermore we can break down the 111 by applying Euclid’s Algorithm to 111 and 6. 

This produces the gcd(111,6)=3 so that both 6 and 111 are factored by 3. Thus we have 

the final result- 

 

                                 3793733333 ⋅=⋅⋅=  

 

Which factors our number N. In most cases the factoring is not quite as simple as this and 

one must work rather hard to actually find the inverse of a number M appearing in the 



denominator of the derivative of y(x3) to obtain larger values for x3. Also one is free to 

change the a and bs in the elliptic equation. The work can become easier by an 

appropriate choice of a and b usually not known beforehand. 

 

Next, consider factoring the number N=63=3·3·7 using the equation y
2
=x

3
+8x-8 which 

also has an integer point P(1,1). Here the derivative at P(1,1) is dy(x1)/dx=11/2. One 

finds  on applying the Euclid Algorithm between 2 and 63 that- 

 

                      ;123163 +⋅=  

 

So that gcd(63,2)=1 and on inverting- 
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The inverse of 2 then becomes -31+[integer · (63)]. One possibility for 2
-1 

is 32. Thus we 

can write- 
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Notice that these two new large values are integers which contradicts the fact that the 

cubic y
2
=x

3
+8x-8 has only a limited number of integer points including (1,1), (2,4) , 

(6,16), (17,71) and (22,104) along the upper branch . This means that x3 and y3 must be 

approximations, but probably pretty good ones. Let’s check. We find- 
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So we indeed see close agreement but not an exact match. 

 

Continuing on, we next look at the derivative at the new y(x3). It yields- 
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meaning that we have to be able to invert  the denominator in the last expression to get 

the next x3. It is s clear that 43613153 and 63 have 1 as its greatest common denominator 

since the first number is prime. So the process must be continued until a point is reached 

where the denominator of the derivative factors N=63. The factor will turn out to be 3, 

7,or 21 in this case. Computer automation makes this elliptic curve method of factoring 

large numbers N one of the best presently available. However, the challenge still remains 



to find additional and superior methods for quickly factoring very large numbers of 100 

digits or larger as required in cryptography. 

 

Finally let us generate the differential equation which has y
2
=x

3
+ax+b as a solution. We 

already have given the form of the first and second derivatives above. Differentiating the 

first derivative again one has- 
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 So the governing second order non-linear equation for elliptic curves is- 
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Just to show that things work, take the simple solution y=x
(3/2) 

. Here- 
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