MORE ON A MODIFIED PASCAL TRIANGLE

Several years ago we came up with a new modified Pascal Triangle heretofore unknown. Its first eight rows read-

```
                        1
                        1 1
                    1 4 1
            1 111 11 11
                1 26 66 26 1
                1
    1
1 247 4293 15619 156194293 247 1
```

Here the rows go from $n=1$ to 8 , while its columns go from $m=1$ to n. Thus the element $D[6,3]=302$ and $D[8,6]=4293$. It is our purpose here to discuss in more detail the properties of this modified Pascal Triangle.

We begin by noting the symmetry about the vertical line containing the values $1,4,66,2416$. These values are given by -

$$
D[2 n+1, n+1]=(n+1)\{D[2 n, n]+D[2 n, n+1]\} .
$$

So the next integer after 2416 will be $\mathbf{1 5 6 1 9 0}$. Also it is noted that the sum of the elements in each row n equals $n!$. This means that the eighth row $(n=8)$ will sum to $8!=40320$.

Elements in the second column read 1,4,11,26,57,120,247. This means that -

$$
D[n, 2]=2 D[n-1,2]+(n+1)
$$

So the next term in the series after 247 is 502.
Further inspection of the above modified Pascal Triangle shows that any element in the nth row satisfies-

$$
D[n, m]=(n+1-m) D[n-1, m-1]+(m) D[n-1, m]
$$

Thus if one knows all values $D(n, m]$ in the nth row every element $D(n+1, m)$ will be known in the $\mathrm{n}+1$ row. We have, for example, that-

$$
D[7,3]=5 \mathrm{D}[[6,2]+3 \mathrm{D}[6,3]=1191
$$

By playing around with the intrgers in the above modified Pascal Triangle, we have been able , after some effort, to come up with the general equality-

$$
D[n, m]=\operatorname{sum}\left((-1)^{\wedge}(k-1)^{*}(n+1)!^{*}(m+1-k)^{\wedge} n /\left((k-1)!^{*}(n+2-k)!\right), k=1 . . m\right)
$$

This definition can be expressed via the one line computer program-

$$
D[n, m]:=\operatorname{sum}\left((-1)^{\wedge}(k-1)^{*}(n+1)!^{*}(m+1-k)^{\wedge} n /\left((k-1)!^{*}(n+2-k)!\right), k=1 . . m\right) ;
$$

after specifying the integer values for n and m .
Thus we find $D[10,5]=157242248$ and $D[15,9]=311387598411$.
One notices as n gets large the value of $D[n, m]$ for fixed n approaches the shape of a Gaussian. Here are the values for elements $\mathrm{D}[17, \mathrm{~m}]$ over the range $1 \leq \boldsymbol{m} \leq 17$ normalized to D[17,9]-

A point plot of these results, shown as blue circles, follows-

Superimposed on these point results is a continuous Gaussian adjusted to just two points at $m=7$ and $m=9$.The area under the Gaussian is found to be $A=3.099333$. The value of $17!/ D[17,9]=3.095885$. So the results fall very close to each other. One expects to find the area difference to become progressively smaller as \mathbf{n} gets still larger.

We have discussed the properties of a modified Pascal Triangle where the sum of its elements in row n add up to n ! As n gets large the elements along any row n approach a continuous Gaussian. These properties also allow us to relate n ! to π. A one line computer program using MAPLE is also given. It allows us to quickly find any element $D[n, m]$.

U.H.Kurzweg

October 24, 2023
Gainesville, Florida

