After obtaining my Bachelor’s in Engineering in 2002 with a minor in Mathematics, at the age of 19, I received a National Science Foundation Graduate Research Fellowship with which I obtained my Master’s from the University of Cambridge in 2004 and my PhD at the University of Groningen in 2005 at the age of 21, becoming the youngest PhD in The Netherlands. After a short post-doctoral period at Harvard/US and at Ecole des Mines of Paris/France, I was the youngest recipient of the European Research Council Starting/ERC Grant at the age of 24 (out of ~9,100 applicants only 300 were funded that year), which I carried out at Aristotle University of Thessaloniki and the University of Erlangen-Nuremberg, between 2008-2013. In 2013 I joined the University of Arizona as an Associate Professor, and since 2017 I have been an Associate Professor and Faculty Fellow at the Mechanical and Aerospace Engineering Department of the University of Florida, where I setup the Laboratory of Nanomaterials for Energy and Biological Applications.
Education
BS, Michigan Technological Univ, 2002,MPhil, Univ of Cambridge (Pembroke College), 2004,PhD, Univ of Groningen, 2005
Professional Memberships and Fellowships
American Society of Mechanical Engineers, Member
Teaching Interests
Li-ion Batteries, Energy Storage, Mechanical Design I
Research Interests
Katerina E. Aifantis focuses on using solid mechanics for understanding materials behavior at the nanoscale, such as dislocation-grain boundary and dislocation-graphene interactions. In addition to basic science questions, she uses her theoretical and experimental insight to predict the most promising materials systems that can be used in various applications, ranging from next generation electrodes for Li-ion batteries, to bone regeneration scaffolds and bioacompatible electrodes for deep brain stimulation.
SELECTED PUBLICATIONS
- Shuang F. G , Aifantis, K.E, Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions: a molecular dynamics study, Carbon 172, 50-70, 2021.
- Du Z., Feng X., Cao G., She Z., Tan R., Aifantis K.E., Zhang R., Li X. ,The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism, Bioactive Materials 6, 333-345, 2021.
- Hu P.P, Peng W.P, Wang BG, Xiao D.P, Ahuja U.G, Réthoré R., Aifantis K.E., Concentration-Gradient Prussian Blue Cathodes for Na-Ion Batteries, ACS Energy Letters 5, 100-108, 2020.
- Shuang F.G, Deng H.A, Shafique A. B.G, Marsh S., Treiman D., Tsakalis K., Aifantis K. E. A first study on nanoporous tungsten recording electrodes for deep brain stimulation. Materials Letters, article #126885 (4 pg), 2019.
- Huang Y.G, Deng H.A, Fan Y., Zheng L., Che J.G, Li X., Aifantis K.E., Conductive nanostructured Si biomaterials enhance osteogeneration through electrical stimulation, Matls Sci. & Eng. C 103, article# 109748 (10 pg), 2019.
- Hu P.P, Dorogov M., Yan X., Aifantis K.E., Transforming single crystal CuO/Cu2O nanorods into nano-polycrystalline Cu/Cu2O through lithiation, ChemElectroChem 6, 3139-3144, 2019.
Dr. Chen received her Ph.D from the Georgia Washington University in 2003 and jointed University of Florida in 2006. She was a recipient of DARPA Young Faculty Award in 2010 for “Predicting materials properties from their microstructural architecture”, DOE Early Career Award in 2011 for “Prediction of thermal transport properties of materials with microstructural complexity”, and nine US National Science Foundation Awards for multiscale studies of mechanics of advanced materials and thermal transport in heterostructures from 2009 to 2023. Six of her former Ph.D students are now university professors and two are US national laboratory scientists. Dr. Chen was selected as a Herbert Wertheim College of Engineering Doctoral Dissertation Advisor/Mentoring Awardee in 2022.
Education
Ph.D, 2003, The George Washington University
Professional Memberships and Fellowships
American Physical Society, Member
The American Society of Mechanical Engineers, Member
Materials Research Society, Member
Society of Engineering Science, Member
Teaching Interests
Continuum Mechanics, Vibrations, Nano and Micro Mechanics
Research Interests
Linking and Unifying Atomistic and Continuum Descriptions, Concurrent Multiscale Computational Methods, Atomistic and Multiscale Mechanics, Coupled Defect Dynamics and Phonon transport
Selected Publications
- A. Diaz, B. Gu, Y. Li, S.J. Plimpton, D.L. McDowell, Y. Chen, A parallel algorithm for the concurrent atomistic-continuum methodology, Journal of Computational Physics, 463 (2022) 111140.
- Y. Li, Z. Zheng, A. Diaz, S.R. Phillpot, D.L. McDowell, Y. Chen, Resonant interaction between phonons and PbTe/PbSe (001) misfit dislocation networks, Acta Materialia, 237 (2022) 118143.
- X. Chen, W. Li, L. Xiong, Y. Li, S. Yang, Z. Zheng, D.L. McDowell, Y. Chen, Ballistic-diffusive Phonon Heat Transport across Grain Boundaries, Acta Materialia, 136 (2017) 355-365.
- X. Chen, L. Xiong, D.L. McDowell, Y. Chen, Effects of phonons on mobility of dislocations and dislocation arrays, Scripta Materialia, 137 (2017) 22-26.
- L. Xiong, L., J. Rigelesaiyin, X. Chen, S. Xu, D.L. McDowell, and Y. Chen, Coarse-grained elastodynamics of fast moving dislocations.Acta Materialia, 2016. 104: p. 143-155.
- N. Zhang, N., S. Yang, L. Xiong, Y. Hong, and Y. Chen, Nanoscale toughening mechanism of nacre tablet.Journal of the Mechanical Behavior of Biomedical Materials, 2016. 53: p. 200-209.
- Y. Chen, S. Shabanov, and D.L. McDowell, Concurrent atomistic-continuum modeling of crystalline materials.Journal of Applied Physics, 2019. 126(10): p. 101101.
- Y. Chen, and A. Diaz, Physical foundation and consistent formulation of atomic-level fluxes in transport processes.Physical Review E, 2018. 98(5): p. 052113.
Chase Hartquist is an Assistant Professor in the Department of Mechanical and Aerospace Engineering at the University of Florida. He obtained his Ph.D. in Mechanical Engineering at the Massachusetts Institute of Technology, where he investigated the mechanics of fracture in soft network materials. He earned his B.S. and M.S. in Mechanical Engineering from Washington University in St. Louis, where he studied the mechanics of vascular surgery and biomedical materials. His research focuses on understanding the mechanical and failure behaviors of soft structures, networks, and polymers. This work leverages fundamental structure-property relationships across length scales to inform design of high-performing soft materials and structures for emerging applications in medical technology and clean energy.
Education
Ph.D., 2025, Massachusetts Institute of Technology
MS, 2021, Washington University in St. Louis
BS, 2020, Washington University in St. Louis
Research Interests
Solid Mechanics, Soft Materials, Polymer Physics, Biomechanics, Medical Devices
Teaching Interests
Mechanics of Materials, Continuum Mechanics, Fracture Mechanics, Biosolid Mechanics, Soft Tissue Mechanics
Education
Ph.D., 1992, Virginia Polytechnic Institute
Research Interests
Experimental mechanics, moire interferometry, compositie materials, micro air vehicles.
Professional Memberships and Fellowships
American Institute of Aeronautics and Astronautics, Member
Society of Manufacturing Engineers, Member
Professor Spearot received his Ph.D. in 2005 from the Georgia Institute of Technology. His research broadly includes the use of atomistic and mesoscale simulation techniques to study the mechanical and thermodynamic properties of materials, with particular focus on the behavior of interfaces. He was awarded the NSF CAREER Award in 2010 and was named 2020 Teacher of the Year in the Department of Mechanical & Aerospace Engineering.
Education
Ph.D., 2005, Georgia Institute of Technology
Professional Memberships and Fellowships
American Society of Electrics and Electronic Engineers, Member
The Minerals, Metals, & Materials Society, Member
US Association for Computational Mechanics, Member
Teaching Interests
Mechanics of materials, fracture mechanics, classical atomistic simulation methods.
Research Interests
Computational mechanics and materials science (including atomistic simulations, discrete dislocation dynamics simulations, and phase-field modeling), behavior of defects in materials, nanostructured materials, linking between atomistic and continuum length scales, and method development for atomistic and mesoscale computational modeling.
Professor Ghatu Subhash obtained his PhD from University of California San Diego in 1991 and conducted his post-doctoral research at California Institute of Technology. His research focuses on multiaxial behavior of advanced ceramics, metals, composites, gels and biological materials. He has developed novel experimental methods which have been patented and widely used. He has co-authored 205 peer reviewed journal articles (8400 citations in Google Scholar, h-index=48), 85 conference proceedings, 2-books, and 6 patents. He has given numerous keynote and invited lectures at major international conferences. He has graduated 35-PhD students and is currently advising 6-PhD students and one post-doctoral fellow. Many of his students have received awards at International Student Paper Competitions in professional societies and were awarded fellowships from NSF, DOD, and DOE. His former students are employed at major Universities in US and abroad, and national laboratories including SNL, ORNL, PNNL and ARL. He is a Fellow of three societies: The American Society of Mechanical Engineers (ASME), Society of Experimental Mechanics (SEM), and the American Ceramic Society (ACerS). He is the Editor-in-Chief of Mechanics of Materials (an International Journal) and Associate Editor of Journal of the American Ceramic Society. He has received numerous awards for teaching, research and professional service including the SEM Lazan Award (2021) for innovative contributions to experimental mechanics, UF Doctoral Dissertation Advisor/Mentoring Award (2021), SEM ‘Frocht Award’ (2018) in recognition of outstanding achievements as an educator, ‘Best Paper’-Journal of Engineering Materials and Technology (2016), ‘Significant Contribution Award’ for development of rapid processing scheme of ceramic nuclear fuels from the American Nuclear Society. ‘Technology Innovator Award’ from University of Florida, ASME Student Section Advisor Award’, ‘SAE Ralph R. Teetor Educational Award’, and ‘ASEE Outstanding New Mechanics Educator’ award. He has also served as the National Academies of Engineering Panel Member.
Education
Ph.D., 1991, University of California San Diego
Professional Memberships and Fellowships
Society of Experimental Mechanics, Fellow 2015
The Minerals, Metals & Materials Society, Member
American Ceramic Society, Fellow 2020
Teaching Interests
Experimental Mechanics, Mechanics of Materials, Elasticity, High Strain Rate Deformation of Advanced Materials
Research Interests
– Cutting-edge research in the areas of solid mechanics, material science and biomedical engineering
– High strain rate and shock response of biomaterials and gels
– Dynamic multiaxial response, characterization of deformation modes, and fracture behavior of structural ceramics, ultrahigh temperature materials, metallic glasses, 3D woven composites, structural foams, nanostructured materials, gels and biological materials, and refractory metals
– Processing-structure-property relationships in ultra-high temperature ceramics and ceramics
– Development of novel test methods for low density materials and experimental mechanics
– Dynamic wear, dynamic hardness
Professor Xin Tang received his Post-doctoral training from Harvard University and Ph.D. from University of Illinois at Urbana-Champaign. His research centers at the interface of engineering, physics, chemistry, and biology. His lab studies cell and molecular mechanics in cancer, cardiovascular system, and neurons; unconventional mechano-electrophysiology; quantitative in vivo/vitro functional bio-imaging; AI/ML-powered bio-nanotechnology; and development of new biophysical tools to probe biological function/structure. His research is supported by NIH, NSF, AFOSR/DoD, UF Health Cancer Center, UF Opportunity Funds, and etc. He was awarded the NIH Maximizing Investigator’s Research Award (R35), American Association for Cancer Research (AACR) Tumor Microenvironment (TME) Junior Investigator, Researcher of the Year 2024 Award in the Department of Mechanical & Aerospace Engineering, NIH/NCI-designated UF Health Cancer Center Rising Star of the 2024 Year Award, and Faculty Advisor/Mentor of the Year 2025 Award in the Herbert Wertheim College of Engineering.
Education
Postdoc, 2017, Harvard University
Ph.D., 2013, University of Illinois at Urbana-Champaign
Teaching Interests
Active Soft Matter Biophysics; Biomechanics at Molecular, Cellular and Tissue Scales; Quantitative Optical Bio-imaging; Continuum Mechanics; and Finite-element Analysis
Research Interests
Biomechanics, Mechanobiology and Soft Matter: Cell and molecular mechanics in cancer development and metastasis, cardiovascular system, and neurons; unconventional mechano-electrophysiology; quantitative in vivo/vitro functional bio-imaging; bio-nanotechnology; and development of new biophysical tools to probe biological function/structure.
Recent Publications
Yin Xin, Keming Li , Miao Huang, Chenyu Liang, Dietmar Siemann, Lizi Wu, Youhua Tan, and Xin Tang, Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. 2023, Oncogene (Nature), https://www.nature.com/articles/s41388-023-02844-x.pdf.
Note: This article is selected as “The best of Oncogene 2023″.
Chenyu Liang, Qian Zhang, Xin Chen, Jiawei Liu, Mai Tanaka, Shu Wang, Sharon E. Lepler, Zeyuan Jin, Dietmar W. Siemann, Bo Zeng, and Xin Tang, Human cancer cells generate spontaneous calcium transients and intercellular waves that modulate tumor growth, Biomaterials (Impact Factor: 15.3), 2022, 290, 121823, https://www.sciencedirect.com/science/article/pii/S014296122200463X.
Chenyu Liang, Miao Huang, Tianqi Li, Lu Li, Hayley Sussman, Yao Dai, Dietmar W. Siemann, Mingyi Xie, and Xin Tang, Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces, Soft Matter (Impact Factor: 4.1), 2022,18, 1112-1148, https://pubs.rsc.org/en/content/articlelanding/2022/sm/d1sm01618k